5,914 research outputs found

    Correlation-driven chiral superconductivity and chiral spin order in doped kagome lattice

    Full text link
    We study the electronic instabilities of the Hubbard model in the 1/6 hole-doped Kagome lattice using the variational cluster approach. The 1/6 hole doping is unique in the sense that the Fermi level is at the von Hove singularity and the Fermi surface has a perfect nesting. In this case, a density wave is usually realized. However, we demonstrate here that the chiral dx2βˆ’y2+idxyd_{x^{2}-y^{2}}+id_{xy} superconducting state is most favorable when a small Hubbard interaction U(U<3.0t) is introduced, and a scalar chiral spin order is realized at large U(U>5.0t). Between them, a spin-disordered insulating state is proposed.Comment: 5 pages, 4 figure

    Quantum Phase Transition in Hall Conductivity on an Anisotropic Kagome Lattice

    Full text link
    We study the quantum Hall effect(QHE) on the Kagom\'{e} lattice with anisotropy in one of the hopping integrals. We find a new type of QHE characterized by the quantization rules for Hall conductivity Οƒxy=2ne2/h\sigma_{xy}=2ne^{2}/h and Landau Levels E(n)=Β±vF(n+1/2)ℏBeE(n)=\pm v_{F}\sqrt{(n+1/2)\hbar Be} (nn is an integer), which is different from any known type. This phase evolves from the QHE phase with Οƒxy=4(n+1/2)e2/h\sigma_{xy}=4(n+1/2)e^{2}/h and E(n)=Β±vF2nℏBeE(n)=\pm v_{F}\sqrt{2n\hbar Be} in the isotropic case, which is realized in a system with massless Dirac fermions (such as in graphene). The phase transition does not occur simultaneously in all Hall plateaus as usual but in sequence from low to high energies, with the increase of hopping anisotropy.Comment: 5 pages, 4 figure
    • …
    corecore